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Abstract
Background—This paper outlines therapeutic mechanisms of hyperbaric oxygen therapy
(HBO2) and reviews data on its efficacy for clinical problems seen by plastic and reconstructive
surgeons.

Methods—The information in this review was obtained from the peer-reviewed medical
literature.

Results—Principal mechanisms of HBO2 are based on intracellular generation of reactive
species of oxygen and nitrogen. Reactive species are recognized to play a central role in cell signal
transduction cascades and the discussion will focus on these pathways. Systematic reviews and
randomized clinical trials support clinical use of HBO2 for refractory diabetic wound healing and
radiation injuries; treatment of compromised flaps and grafts and ischemia-reperfusion disorders is
supported by animal studies and a small number of clinical trials, but further studies are warranted.

Conclusions—Clinical and mechanistic data support use of hyperbaric oxygen for a variety of
disorders. Further work is needed to clarify clinical utility for some disorders and to hone patient
selection criteria to improve cost-efficacy.

Introduction
Hyperbaric oxygen (HBO2) therapy is a treatment modality in which a person breathes
100% O2 while exposed to increased atmospheric pressure. HBO2 treatment is carried out in
either a mono- (single person) or multi-place (typically 2 to 14 patients) chamber. Pressures
applied while in the chamber are usually 2 to 3 atmospheres absolute (ATA), the sum of the
atmospheric pressure (1 ATA) plus additional hydrostatic pressure equivalent to one or two
atmospheres (1 atmosphere = a pressure of 14.7 pounds per square inch or 101 kPa).
Treatments are usually about 1.5 to 2 hours long, depending on the indication and may be
performed one to three times daily. Monoplace chambers are usually compressed with pure
O2. Multiplace chambers are pressurized with air and patients breathe pure O2 through a
tight-fitting face mask, a hood, or an endotracheal tube. During treatment, the arterial O2
tension often exceeds 2000 mmHg and levels of 200 to 400 mmHg occur in tissues. (2)

The initial effect of pressurizing the human body is intuitively obvious - elevating
hydrostatic pressure increases partial pressure of gases and causes a reduction in the volume
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of gas-filled spaces according to Boyle's law. Gas volume reduction has direct relevance to
treating pathological conditions in which gas bubbles are present in the body, such as arterial
gas embolism and decompression sickness. The majority of patients who undergo HBO2
therapy are not treated for bubble-induced injuries hence therapeutic mechanisms are related
to an elevated O2 partial pressure. A summary of these mechanisms is shown in Figure 1.

It is well accepted that breathing greater than 1 ATA O2 will increase production of reactive
oxygen species (ROS). (2) This is critically important as it is the molecular basis for a
number of therapeutic mechanisms. ROS and also reactive nitrogen species (RNS) serve as
signaling molecules in transduction cascades, or pathways, for a variety of growth factors,
cytokines and hormones. (3–5) ROS is a collective term for O2-derived free radicals as well
as O2-derived non-radical species such as hydrogen peroxide and hypochlorous acid. ROS
are generated as part of normal metabolism by mitochondria, endoplasmic reticulum,
peroxisomes, various oxidase enzymes and phospholipid metabolism. ROS act in
conjunction with several redox systems involving glutathione, thioredoxin and pyridine
nucleotides, and play central roles in coordinating cell signaling and also anti-oxidant,
protective pathways. (3,4,6) (5) This point is central to the ensuing discussion – oxidative
stress is not synonymous with oxygen toxicity.

RNS include nitric oxide (·NO) and agents generated by reactions between ·NO, or its
oxidation products, and ROS. Peroxide-dependent enzymes such as myeloperoxidase can
catalyze reactions between nitrite, a major oxidation product of ·NO, and hydrogen peroxide
or hypochlorous acid to generate oxidants such as nitryl chloride and nitrogen dioxide that
are capable of nitration and S-nitrosylation reactions. (11–13)There are three nitric oxide
synthase. The effect of hyperoxia on catalytic activity is reflected by values for the apparent
Michaelis-Menten constant for O2 and it differs among the three NOS isoforms. In part this
is because enzyme activity is constrained by ferric-ferrous conversion at the active site. As a
general statement, however, hyperoxia augments RNS production. (14–18)

Discussion in this review will focus on those HBO2 indications most pertinent to Plastic and
Reconstructive Surgery. General discussions of HBO2 indications can be found in recent
texts and for the general plastic surgeon, it is important to mention that consultation and
advice on HBO2 may be sought through the Undersea and Hyperbaric Medical Society and
more locally with board-certified physicians. (19–21) That is, Undersea and Hyperbaric
Medicine sub-specialty certification is obtainable through the American Board of Medical
Specialists.

Wound healing
HBO2 is used to treat refractory diabetic lower extremity wounds and delayed radiation
injuries. Clearly, the pathophysiology of these disorders differs but they share several
elements include depletion of epithelial and stromal cells, chronic inflammation, fibrosis, an
imbalance or abnormalities in extracellular matrix components and remodeling processes,
and impaired keratinocyte functions.(22–27) Diabetic wound healing is also impaired by
decreased growth factor production, while in post-radiation tissues there appears to be an
imbalance between factors mediating fibrosis versus normal tissue healing. (22,23,27) The
reader is referred to several recent reviews for general discussions on pathophysiology. (28–
30)

Clinical efficacy of HBO2
Wound healing HBO2 protocols involve daily treatments of 1.5 to 2 hours for 20 to 40 days.
The effectiveness of HBO2 as an adjuvant therapy for diabetic lower extremity ulcerations
can be examined from the perspective of hastened healing and also reduced risk of major
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amputations. Clearly related, these two vantage points are not synonymous as current
diabetic wound care often includes a ray or partial foot amputation as an acceptable
approach to obtain wound closure and prompt rehabilitation.

This is the era of meta-analysis and despite drawbacks with these evaluations they are used
regularly as a final judgment on efficacy of an intervention. According to the most recent
evaluation, employing HBO2 as a component to refractory diabetic wound management
decreases risk of a major amputation with an odds ratio of 0.236 [95% confidence interval
(CI) 0.133 – 0.418]. Adjunctive use of HBO2 as a component to diabetic wound care
improves healing with an odds ratio of 11.64 [95% CI 3.457 – 39.196] (31) This analysis
was based on clinical trials conducted through 2007.(32–40) The results continue to
demonstrate that HBO2 markedly improves outcome. Another meta-analysis concluded that
only four patients needed to be treated with HBO2 to prevent one amputation.(41) Since this
publication, two additional groups have reported benefits to use of HBO2; one was a double-
blinded randomized trial. (42,43) The results continue to demonstrate that HBO2 improves
outcome. The double blinded trial was a single-center study that enrolled individuals with
diabetes foot ulcers. Individuals were randomized to receive either HBO2 (100% oxygen,
2.5 ATA for 85 minutes five days per week for 8-weeks) or control (room air, 2.5 ATA for
85 minutes five days per week for 8-weeks) and good wound care. The outcome was a
healed wound by 12 months after the commencement of therapy. A total of 99 individuals
were evaluated, 38 received HBO and 37 received control therapy. By one year of follow up
52% of those receiving HBO2 healed and 29% of those receiving control (p=0.03).

The benefit of HBO2 for radiation injury also has been shown in randomized trials and its
utilization supported by independent evidence-based reviews.(44–46) It is important to state
that for both diabetic wounds and radiation injuries, HBO2 is used in conjunction with
standard wound care management techniques. That was the format followed in clinical trials
and it is fully understandable based on mechanisms of action. If used only in a post-
operative period, or in the absence of appropriate surgical care, one should expect HBO2 to
be ineffective treatment. (47,48)

Mechanisms of action
Animal trials have documented wound healing benefits of HBO2.(49–52) The basis for its
efficacy continues to be investigated and appears to be a combination of systemic events as
well as local alterations within the wound margin (see Fig. 1). Neovascularization occurs by
two processes. Regional angiogenic stimuli influence the efficiency of new blood vessel
growth by local endothelial cells (termed angiogenesis) and they stimulate the recruitment
and differentiation of circulating stem/progenitor cells (SPCs) to form vessels de novo in a
process termed vasculogenesis. (53–55) HBO2 has effects on both these processes.

Bone marrow eNOS activity is required for SPCs mobilization and this is compromised by
diabetes (56–60) Radiation, chemotherapy and several other factors also diminish SPCs
mobilization, although mechanisms for these effects are unclear. (61–64) By stimulating
·NO synthesis in bone marrow, HBO2 mobilizes SPCs in normal humans, patients
previously exposed to radiation and in diabetics.(65–67) Importantly, in contrast to SPCs
mobilization stimulated by infusion of growth factors; HBO2 does not concomitantly elevate
the circulating leukocyte count which may be thrombogenic. (68) In animal models, SPCs
mobilized by HBO2 home to wounds and accelerate healing. (50,52,69)

Separate from its effect on SPCs mobilization, HBO2-mediated oxidative stress at sites of
neovascularization will stimulate SPCs growth factor production. (70,71) This is due at least
in part to augmented synthesis and stabilization of hypoxia inducible factors (HIF). (72–74)
These transcription factors are heterodimers of HIF-α and a constitutively expressed HIF-β.
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It is well recognized that expression and activation of HIF-α subunits are tightly regulated
and their degradation by the ubiquitin-proteasome pathway typically occurs when cells are
replete with O2. (75,76) However, whether hypoxic or normoxic conditions prevail, free
radicals are required for HIF expression. (76–78) HBO2 elevates HIF-1 and −2 levels in
vasculogenic SPCs because of increases in ROS. One consequence of ROS-mediated stress
is augmented production of the antioxidant thioredoxin and one of its regulatory enzymes,
thioredoxin reductase. (74) Thioredoxin can act as a transcription factor and in SPCs appears
to be the proximal species responsible for promoting the expression and activity of HIFs.
(79–81) HIF-1 and −2 then stimulate transcription of many genes involved with
neovascularization. A physiological oxidative stress that triggers the same pathway is lactate
metabolism. (71)

Pluripotent mesenchymal stem cells were shown in vitro to be stimulated by HBO2 to
synthesize placental growth factor. This too is an ROS-dependent phenomenon and will
significantly increase cell migratory and tube formation functions. (82) Microvascular
endothelial cells exposed to HBO2 in ex vivo studies up-regulate a variety of protein
damage-control pathways that lead to enhanced oxidative stress resistance, cell proliferation
and tube formation. (83) HBO2 does not alter circulating levels of insulin, insulin-like
growth factors, or pro-inflammatory cytokines [e.g. tumor necrosis factor (TNF)-α,
interleukin (IL)-6 and IL-8] in normal healthy humans. (84,85) Vascular endothelial growth
factor (VEGF) and angiopoietin, as well as stromal derived factor (SDF-1) influence SPCs
homing to wounds and SPCs differentiation to endothelial cells. (86) (87) Synthesis of
VEGF has been shown to be increased in wounds by HBO2, and it is the most specific
growth factor for neovascularization.(72) HBO2 also stimulates synthesis of basic fibroblast
growth factor (bFGF) and transforming growth factor β1 by human dermal fibroblasts, (88)
angiopoietin-2 by human umbilical vein endothelial cells, (89) bFGF and hepatocyte growth
factor in ischemic limbs, (90) and it up-regulates platelet derived growth factor (PDGF)
receptor in wounds.(91) Extracellular matrix formation is closely linked to
neovascularization and it is another O2-dependent process. (92) Enhanced collagen synthesis
and cross-linking by HBO2 have been described, but whether changes are linked to the O2-
dependence of fibroblast hydroxylases, alteration in balance of wound growth factors,
metalloproteinases and/or inhibitors of metalloproteases, is as yet unclear. (92,93)

Before leaving the subject of wound healing, mention should be made of conflicting data
and where further work is needed. The influence HBO2 has on HIF isoform expression
appears to vary with different tissues and possibly with chronology [e.g. looking early or
late after wounding or an ischemic insult]. One recent model showing accelerated wound
healing by HBO2 reported lower HIF-1 levels at wound margins, along with reduced
inflammation and fewer apoptotic cells. (51) In contrast, higher levels of HIF-1 have been
linked to elevated VEGF in wounds in response to hyperoxia. (72,94) With regard to
diabetes, there is a complex interplay present between ROS and RNS. (22,59,60)
Impairments in eNOS function are related to hyperglycemia, insulin resistance, impaired
enzyme synthesis, disordered caveolin associations and enhanced protein kinase C activity.
(59,60,95) Production of O2· is augmented in diabetes and this will reduce bioavailability of
·NO because the two radicals react rapidly to generate alternative RNS. (96,97) Disordered
balance between O2· and ·NO is reflected by elevated levels of nitrotyrosine in plasma of
type II diabetics. (98) The reason for outlining these issues with regard to HBO2 is because
there is a need for more investigations. Data from diabetic animals and humans indicate that
HBO2 can overcome some aspects of eNOS inhibition but it is doubtful that all issues have
been resolved. (66,67,99,100)

To summarize, HBO2 can stimulate healing in refractory wounds and irradiated tissues.
Therapy for refractory diabetic wounds is likely to reduce the risk of lower extremity
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amputation by 2 to 3 times, with an absolute rate of major amputation reductions of about
20% (e.g., 11% versus 32%) and a number needed to treat of about 4. With respect to cost-
effectiveness, a study from Canada indicated that over a 12-year period, the use of HBO2
should save about $9,000 in overall costs to the care of a patient with diabetes.(101,102) It is
likely that these estimates can be honed further with improved patient selection criteria and
the benefits in radiation injury are not well elucidated. The common mechanistic theme for
both indications is oxidative stress responses improve neovascularization events. Cells
within the wound exhibit increased collagen synthesis, growth factors production, improved
cell migration and tube-formation functions. A separate free radical-based mechanism for
augmentation of neovascularization by HBO2 is through SPCs. Hyperoxia stimulates bone
marrow SPCs mobilization and also improves their functions once they home to peripheral
sites.

Compromised Flaps and Grafts
HBO2 is used on occasion to treat compromised flaps and grafts, a practice supported by
Guidelines from the Undersea and Hyperbaric Medical Society. (21) This discussion was
placed between wound healing and reperfusion injuries because, depending on the situation,
graft/flap treatment may be more or less related to supporting tissues through either of these
two main mechanistic categories. For example, in clinical practice a wound may not be
ready for coverage by a graft and neovascularization/granulation tissue formation can be
hastened according to mechanisms outlined above. This was the focus for a recent clinical
series. (103) Alternatively, a major flap may suffer an ischemic insult in the process of its
creation and thus mechanisms described in the next section are pertinent.

A comprehensive review of HBO2 use for flaps and grafts was recently published. (104)
There is no need to recapitulate the information except to say that there is one prospective,
blinded clinical trial. Administration of HBO2 prior to and for three days following skin
grafting led to a significant 29% improvement in graft survival. (105) A problem with this
trial, however, is that the success in the control arm of the study was markedly less that one
would expect in current practice. As was emphasized in the review, support for use of HBO2
in flap/graft compromise comes from a very large number of animal studies. (104,106)
Comparative clinical trials support its use but more work is needed. (107,108)

Reperfusion injuries and HBO2

Clinical studies have documented significant survival enhancement with HBO2 for
extremity re-implantation and free tissue transfer, and following crush injury. (109,110) As
is the case with flaps and grafts, however, the amount of controlled clinical data is small and
insufficient to perform an evidence-based assessment of HBO2 efficacy. None-the-less, the
breadth of clinical experience across a variety of disorders should spur closer assessment of
its use. Clinical trials have shown that HBO2 can reduce coronary artery re-stenosis after
balloon angioplasty/stenting, (111,112) decrease muscle loss after thrombolytic treatment
for myocardial infarction, (113–115) improve hepatic survival after transplantation and lead
to more rapid return of donor liver function (116,117) and reduced the incidence of
encephalopathy seen after cardiopulmonary bypass and following carbon monoxide
poisoning. (118,119) In contrast to protocols for wound healing, HBO2 treatments for
reperfusion injuries are done for just a few days rather than weeks; they are performed at
higher O2 partial pressures (~2.5 to 3.0 ATA) and may occur multiple times in the same day.

An early event associated with post-ischemic tissue reperfusion is adherence of circulating
neutrophils to vascular endothelium by β2 integrins. When animals or humans are exposed
to HBO2 at 2.8 to 3.0 ATA for at least 45 minutes, the ability of circulating neutrophils to
adhere to target tissues is temporarily inhibited. (120–123) In animal models, HBO2-
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mediated inhibition of neutrophil β2 integrin adhesion has been shown to ameliorate
reperfusion injuries of brain, heart, lung, liver, skeletal muscle and intestine, as well as
smoke-induced lung injury and encephalopathy due to carbon monoxide poisoning. (123–
131) It also appears that benefits of HBO2 in decompression sickness are related to the
temporary inhibition of neutrophil β2 integrins, in addition to the Boyle’s Law-mediated
reduction in bubble volume as discussed in the introduction. (132)

Exposure to HBO2 inhibits neutrophil β2 integrin function because hyperoxia increases
synthesis of reactive species derived from iNOS and myeloperoxidase, leading to excessive
S-nitrosylation of cytoskeletal β actin. (133). This modification increases the concentration
of short, non-cross-linked filamentous (F)-actin which alters F-actin distribution within the
cell. HBO2 does not reduce neutrophil viability and functions such as degranulation,
phagocytosis and oxidative burst in response to chemoattractants remain intact. (134,135)
Inhibiting β2 integrins with monoclonal antibodies will also ameliorate ischemia-reperfusion
injuries but in contrast to HBO2, antibody therapy causes profound immunocompromise.
(136,137) HBO2 does not inhibit neutrophil antibacterial functions because the G-protein
coupled ‘inside-out’ pathway for activation (such as that triggered by endotoxin) remains
intact, and actin S-nitrosylation is reversed as a component of this activation process. (133)
(138) Probably the most compelling evidence that HBO2 does not cause
immunocompromise comes from studies in sepsis models, where HBO2 has a beneficial
effect. (139–141)

A separate anti-inflammatory pathway for HBO2 involves impaired pro-inflammatory
cytokine production by monocyte-macrophages. This action has been shown in animal
models and human beings. (142–144) The effect on monocyte/macrophages may be the
basis for reduced levels of circulating pro-inflammatory cytokines under stress conditions.
(84) The molecular mechanism is unknown, but could be related to HBO2-mediated
enhancement of heme oxygenase-1 and heat shock proteins (HSP) [e.g. HSP 70]. (7,10)
Hence, once again, an oxidative stress response seems to occur.

Finally, HBO2 has been shown in numerous models to augment ischemic tolerance of brain,
spinal cord, liver, heart and skeletal muscle by mechanisms involving induction of
antioxidant enzymes and anti-inflammatory proteins. (15,145–149) A common theme
among some studies is alterations in HIF-1 production but, as was the case in wound healing
models, timing of HBO2 application appears to influence cellular responses. In several
models, exposure to HBO2 ameliorates post-ischemic injuries by decreasing HIF-1
expression. (150,151) When HBO2 is used in a prophylactic manner to induce ischemic
tolerance, however, its mechanism appears related to up-regulation of HIF-1 and at least one
of its target genes, erythropoietin. (152)

In review, oxidative stress responses triggered by HBO2 improve outcome from a wide
variety of post-ischemic/inflammatory insults. HBO2 also improves ischemic tolerance
when used in a prophylactic manner. Augmented synthesis of reactive species temporarily
inhibits adherence/sequestration of neutrophils by inhibiting β2 integrin function and in
many tissues HBO2 will induce antioxidant enzymes and anti-inflammatory proteins. More
trials to assess clinical efficacy are needed.

Treatment risks
This review has emphasized the positive aspects of HBO2-induced reactive species, but
there is clearly a potential for negative effects. The risks for O2 toxicity depend on the
concentration and intracellular localization of reactive species. Because exposure to
hyperoxia in clinical HBO2 protocols is rather brief, studies show that antioxidant defenses
are adequate so that biochemical stresses related to increases in reactive species are
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reversible (8,10,153,154). Treatments often include so-called air breaks, where a patient
breathes just air for 5 minutes once or twice through the course of a treatment. This
intervention has been demonstrated to enhance pulmonary O2 tolerance (1). CNS O2 toxicity
is manifested as a grand mal seizure. This occurs at an incidence of approximately 1 to 4 in
10,000 patient treatments. (155–157) Pathological changes in association with isolated O2-
mediated seizures have not been found in studies with guinea pigs, rabbits and humans.
(158) Progressive myopia has been reported in patients who undergo prolonged daily
therapy, but this typically reverses within 6 weeks after termination of treatments. (159)
Development of nuclear cataracts has been reported with excessive treatments that exceed a
total of 150 to 200 hours, and the change does not spontaneously reverse. (160)

Summary
This brief review has highlighted some of the beneficial actions of HBO2 and the data that
indicate oxidative stress brought about by hyperoxia can have therapeutic effects. Figure 1
provides a summary of mechanisms, all of which appear to stem from elevations in reactive
species. While there has been substantial advancement of the field in recent years, more
work is required to establish the place of HBO2 in 21st century medicine. Investigations of
fundamental mechanisms are still needed, and better patient selection criteria would improve
cost-efficacy. An extended discussion on other indications for HBO2 can be found in recent
texts. (19–21)
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Figure 1.
Overview on therapeutic mechanisms of HBO2 related to elevations of tissue oxygen
tensions. The figure outlines initial effects (denoted by boxes) that occur due to increased
production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and their
consequences. Other abbreviations: GF=growth factor, VEGF=vascular endothelial growth
factor, HIF= hypoxia inducible factor, SPCs=stem/progenitor cells, HO-1 =heme
oxygenase-1, HSPs=heat shock proteins.
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